
[1711.00937] Neural Discrete Representation Learning - arXiv.org
Nov 2, 2017 · Our model, the Vector Quantised-Variational AutoEncoder (VQ-VAE), differs from VAEs in two key ways: the encoder network outputs discrete, rather than continuous, codes; …
Vector Quantized Variational Autoencoder - GitHub
This is a PyTorch implementation of the vector quantized variational autoencoder (https://arxiv.org/abs/1711.00937). You can find the author's original implementation in …
Vector-Quantized Variational Autoencoders - Keras
Jul 21, 2021 · In this example, we develop a Vector Quantized Variational Autoencoder (VQ-VAE). VQ-VAE was proposed in Neural Discrete Representation Learning by van der Oord et …
理解向量量化变分自动编码器 (VQ-VAE) - 知乎 - 知乎专栏
Oord 等人的这篇论文 提出了使用 离散潜在嵌入 进行 变分自动编码器 的想法。 所提出的模型称为 向量量化变分自动编码器 (VQ-VAE)。 我真的很喜欢这个想法和其带来的结果,但用来加 …
Understanding Vector Quantized Variational Autoencoders (VQ …
Aug 31, 2019 · F rom my most recent escapade into the deep learning literature I present to you this paper by Oord et. al. which presents the idea of using discrete latent embeddings for …
keras-io/vq-vae · Hugging Face
This model, the Vector-Quantized Variational Autoencoder (VQ-VAE) builds upon traditional VAEs in two ways. The encoder network outputs discrete, rather than continous, codes. The prior is …
VQ-VAE Explained - Papers With Code
VQ-VAE is a type of variational autoencoder that uses vector quantisation to obtain a discrete latent representation. It differs from VAEs in two key ways: the encoder network outputs …
Understanding VQ-VAE (DALL-E Explained Pt. 1) - Substack
VQ-VAE stands for Vector Quantized Variational Autoencoder, that’s a lot of big words, so let’s first step back briefly and review the basics.
Vector Quantized Variational Autoencoder (VQ-VAE): A …
In the ever-evolving landscape of unsupervised learning, the Vector Quantized Variational Autoencoder (VQ-VAE) stands as a pivotal innovation, merging autoencoder architecture with …
Vector Quantised Variational AutoEncoder (VQ-VAE) - GitHub …
Encoder output is qϕ(z|x) q ϕ (z | x). We have a codebook consisting of K K embedding vectors ej ∈ RD e j ∈ R D, j =1,2,…,K j = 1, 2, …, K. Posterior categorical distribution of discrete latent …