About 536 results
Open links in new tab
  1. seaborn: statistical data visualization — seaborn 0.13.2 …

    Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. For a brief introduction to …

  2. Installing and getting started — seaborn 0.13.2 documentation

    If you’re working in a Jupyter notebook or an IPython terminal with matplotlib mode enabled, you should immediately see the plot. Otherwise, you may need to explicitly call …

  3. An introduction to seaborn — seaborn 0.13.2 documentation

    Seaborn is a library for making statistical graphics in Python. It builds on top of matplotlib and integrates closely with pandas data structures. Seaborn helps you explore and understand …

  4. Example gallery — seaborn 0.13.2 documentation

    Example gallery#. lmplot. scatterplot

  5. User guide and tutorial — seaborn 0.13.2 documentation

    The seaborn.objects interface. Specifying a plot and mapping data; Transforming data before plotting; Building and displaying the plot; Customizing the appearance

  6. seaborn.kdeplot — seaborn 0.13.2 documentation

    ax matplotlib.axes.Axes. Pre-existing axes for the plot. Otherwise, call matplotlib.pyplot.gca() internally. kwargs. Other keyword arguments are passed to one of the following matplotlib …

  7. seaborn.set_theme — seaborn 0.13.2 documentation

    Set aspects of the visual theme for all matplotlib and seaborn plots. This function changes the global defaults for all plots using the matplotlib rcParams system. The themeing is …

  8. seaborn.boxplot — seaborn 0.13.2 documentation

    Customize the plot using parameters of the underlying matplotlib function: sns . boxplot ( data = titanic , x = "age" , y = "class" , notch = True , showcaps = False , flierprops = { "marker" : "x" }, …

  9. seaborn.pairplot — seaborn 0.13.2 documentation

    seaborn. pairplot (data, *, hue = None, hue_order = None, palette = None, vars = None, x_vars = None, y_vars = None, kind = 'scatter', diag_kind = 'auto', markers = None, height = 2.5, aspect …

  10. seaborn.clustermap — seaborn 0.13.2 documentation

    seaborn.clustermap# seaborn. clustermap ( data , * , pivot_kws = None , method = 'average' , metric = 'euclidean' , z_score = None , standard_scale = None , figsize = (10, 10) , cbar_kws = …

Refresh