
seaborn: statistical data visualization — seaborn 0.13.2 …
Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. For a brief introduction to …
Installing and getting started — seaborn 0.13.2 documentation
If you’re working in a Jupyter notebook or an IPython terminal with matplotlib mode enabled, you should immediately see the plot. Otherwise, you may need to explicitly call …
An introduction to seaborn — seaborn 0.13.2 documentation
Seaborn is a library for making statistical graphics in Python. It builds on top of matplotlib and integrates closely with pandas data structures. Seaborn helps you explore and understand …
Example gallery — seaborn 0.13.2 documentation
Example gallery#. lmplot. scatterplot
User guide and tutorial — seaborn 0.13.2 documentation
The seaborn.objects interface. Specifying a plot and mapping data; Transforming data before plotting; Building and displaying the plot; Customizing the appearance
seaborn.kdeplot — seaborn 0.13.2 documentation
ax matplotlib.axes.Axes. Pre-existing axes for the plot. Otherwise, call matplotlib.pyplot.gca() internally. kwargs. Other keyword arguments are passed to one of the following matplotlib …
seaborn.set_theme — seaborn 0.13.2 documentation
Set aspects of the visual theme for all matplotlib and seaborn plots. This function changes the global defaults for all plots using the matplotlib rcParams system. The themeing is …
seaborn.boxplot — seaborn 0.13.2 documentation
Customize the plot using parameters of the underlying matplotlib function: sns . boxplot ( data = titanic , x = "age" , y = "class" , notch = True , showcaps = False , flierprops = { "marker" : "x" }, …
seaborn.pairplot — seaborn 0.13.2 documentation
seaborn. pairplot (data, *, hue = None, hue_order = None, palette = None, vars = None, x_vars = None, y_vars = None, kind = 'scatter', diag_kind = 'auto', markers = None, height = 2.5, aspect …
seaborn.clustermap — seaborn 0.13.2 documentation
seaborn.clustermap# seaborn. clustermap ( data , * , pivot_kws = None , method = 'average' , metric = 'euclidean' , z_score = None , standard_scale = None , figsize = (10, 10) , cbar_kws = …